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The Short-Range Structure of Ti and Z r  B . C . C .  Solid Solutions containing the to Phase. 
I. General Diffraction Theory and Development of Computational Techniques* 
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Certain Ti and Zr solid solutions containing the co phase exhibit intensity distributions in reciprocal 
spacz which are partly diffuse. In an effort to understand the structural meaning of these diffraction 
patterns, we have developed new methods for the evaluation of the kinematic intensity sum for certain 
kinds of atomic arrangements which are not quite periodic. The methods are illustrated by their applica- 
tion to a simple model for these alloy systems. The model successfully reproduces some but not all of 
the features of observed intensity distributions. 

Introduction 

Alloys based on Ti or Zr containing elements such as 
V or Nb exhibit a b.c.c, solid solution (called the fl 
phase) at high temperatures which can partially decom- 
pose upon cooling to a metastable structure called the 
co phase. Silcock, Davies & Hardy (1955) and Bagaryat- 
skii, Nosova & Tagunova (1955) have shown that the 
co phase has a structure based on that of the ,8 phase. If 
the primitive rhombohedral cell of the b.c.c, structure 
is indexed hexagonally, the resultant triply primitive 
cell has c/a=(3-) 1/2 with atomic positions 0,0,0; 2 i 1. ~ , ~ , ~ ,  
! 2 2. Unless 3,3,  

- h + k + l  =3q  (1) 

where q is an integer and the indices refer to the hexa- 
gonal cell, the structure factor Fhkz vanishes. 

The hexagonal cell dimensions of the as-quenched co 
phase have not been observed to differ from those of the 
parent structure; however the atomic positions become 
0 ,0 ,0 ;2  I I 2 , ~,~,½+ u; :~, 3,~--u. Extinction rule (1) is relaxed 
and after transformation extra Bragg maxima are 
observed in the diffraction pattern. Because each of the 
four cubic cell diagonals is equally likely to have been 
chosen for the hexagonal c axis, the diffraction pattern 
consists of the superposition of the patterns of the four 
variants of the system. For dilute alloys it is generally 
observed that u = ~, though with increasing solute con- 
tent the parameter u may be somewhat less (Sass & 
Borie, 1972). 

In general, as exhibited by their diffraction patterns, 
there are also significant and systematic deviations from 
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periodicity in more concentrated alloys. The most con- 
spicuous features of the patterns are: 

1. Those Bragg maxima common both to co and fl 
[that is, those compatible with extinction rule (1), here 
called fundamental reflections] are sharp. Those as- 
sociated with the co phase only (here called superstruc- 
ture reflections) become diffuse. 

2. The superstructure reflections are broadened main- 
ly in directions perpendicular to e*, resulting in planes 
of diffuse scattering of more or less constant l. 

3. There is no diffuse scattering in the hkO plane of 
reciprocal space. 

4. The superstructure reflections are displaced from 
their normal positions in reciprocal space parallel to 
e* in a systematic way (for example, 001 and 002 are 
shifted toward each other). 

5. The fundamental reflections decrease rapidly in 
intensity with distance from the origin in reciprocal 
space. This large apparent Debye-Waller factor is not 
of thermal origin. 

These properties of the intensity distribution have 
recently been discussed at length by Sass (1972), parti- 
cularly with regard to the systems Zr-Nb,  Ti-V, and 
Ti-Nb. That none of them are related primarily to 
thermal motion is an observation derived from the neu- 
tron scattering experiments with an alloy of Zr-20 wt. 
% Nb of Keating, Axe & Moss (1973). 

It is our purpose here to attempt to understand the 
structural meaning of these features of the diffraction 
patterns from alloy systems that can form the co phase. 
We seek a model specifying atomic positions in the alloy 
for which the kinematic intensity sum may be evaluated, 
which will reproduce quantitatively the observed inten- 
sity distribution. 

New techniques for finding the intensity for a non- 
periodic array of atoms are developed and in Part I 
applied to a first simple model for the atomic configura- 
tion. A result is obtained which with the aid of a com- 
puter gives the diffuse intensity distribution in recipro- 
cal space. Certain features of our result are not in agree- 
ment with experiment. In Part II the diffraction theory 
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is applied to a model which reproduces in detail the ob- 
served intensi ty d is t r ibut ion.  

Diffraction theory. I. Formulation of the problem 

We assume that the four ~ variants scatter indepen- 
dently, and hence intensities from them add. In what 
follows we confine our attention to only one variant. 

We ask how, within one variant, can anomalous in- 
terference effects arise on transformation that could 
account for the observed intensity distribution. Fig. 1 
illustrates how we have supposed that to happen. Be- 
fore transformation the crystal consists of a set of 
hexagonal atomic planes in ABC stacking sequence. On 
transformation one plane moves up, its neighbor 
down (to form a graphite-like double layer), and its 
second neighbor doesn't  move. With nuclei forming at 
random in the crystal there are clearly three equally 
likely ways that can happen" The unshifted plane may 
be A (subvariant co~), B(032), or C(o~3). The subvariants 
will scatter coherently, and there will therefore be inter- 
ference effects not present in the pattern from a large 
periodic co crystal. 

Before transformation the position of any atom may 
be written r,, = m~ax + mza2 + 2m3a3 + ~m3 where m~, m2, 
and m3 are integers. Here a~ and a2 are the basis vectors 
of the hexagonal net. For  reasons shortly to be appa- 
rent, we have taken a3 = c/6, where c is the hexagonal 
lattice constant of the cell and is therefore three times 
the spacing of the hexagonal planes. Hence in terms of C. 
a3, the spacing of the planes is 2a3. The A, B, or C B 
character of a plane is specified by 6,,3. If the plane is A 

C .1 
A'~m3=O;if B'~m3=2axl3+a2/3;ifC'&"3=a~13+2a2/3" 8 • 

With k = 2n(h~bx + hzbz + h3b3), the b,'s being recip- ,~ 
rocal to the a,'s, we have for the kinematic intensity sum c . 

lo(k)= ~ ~ exp [ik.  (rm-rm,)] B - 

m /?I ~ 

= Z Z ~ Z Z Z exp c ,  
m l  m2 D/3 m l '  D'12' m3 '  

+(1712-m2')h2W2(m3-m3)h3)Wik.~m3-~my)]. (2) A .  
c 

Here we have taken the scattering factors, or neutron 8 - 
scattering lengths, for all atoms to be unity. For the A 
system Zr -Nb  with which we will ultimately be con- c 
cerned, this is justifiable aside from a scaling factor 8 
since they are nearly identical for the two kinds of A • 
atoms for X-rays, electrons, and neutrons. C 

Alternatively, with n~=m~-m'~, nz=m2-rn'z, n3=rn3 
- m~, ~,3 = ~ 3  - fi~3', and N, the total number of n~nzn3 
atomic pairs we can form in the crystal, 

t3 
/ .(k)= ~ E E .IV. A 

n I  n2 /'/3 ~ " 

× exp [2ni(n~h~+nzh2+2n3h3)](exp [ik.  6n3]). (3) /3 
A 

The indicated average is necessary since in general C-  
~i,3 may depend on whether m'3 is A, B, or C. If/13 is a 8 
multiple of three, 8rn  3 = 6 m 3 ,  , 6 n 3  : 0 ,  and A 

<exp [ik.  ~,31)= 1 . (4) 

But i f n 3 = 3 q +  l, and if the m ) h  plane is A, then the 
m3th p lane  is B and  k .  8,,3=23n(2h ~+h2). I f  the m~th 
plane is B, k .  8,3 = k .  (al/3 + 2 a z / 3 -  2 a l / 3 -  az/3) = 

n ( -  h~ + h2). 
Similarly for a C plane at m' 3, k .  6,3 = ~-n(- hx - 2h2). 

There results 

(exp [ik.  6,3])= ½{exp [~-ni(2h~ + hz)] 

+exp  [~ni(-h~ +h/)]+exp [~ni(-h~-2h2]} . (5) 

With n3--3q+ 2, we find that 

(exp [ik.  6,3]) = ½{exp [~]ni(- 2 h l -  hz)] 

+exp  []gi(hl-hz)]+exp [~ni(h~ + 2h2)]} . (6) 

We now imagine that atomic displacements related 
to the formation of o9 and illustrated schematically for 
the three subvariants by Fig. 1 occur. Note that the dis- 
placements must be parallel to c and therefore do not 
affect the A, B, or C character of a plane. If the final 
coordinate of a displaced atom in an co cell is one-half, 
the displacement must have been c/2-c /3=a3;  or 
c 1 2 - 2 c / 3 = - a  3. Let to, be plus one if the nlnzn3th 
atom is displaced + a3; minus one if its displacement is 
-a3; and zero if its position is unchanged after trans- 
formation. Define ~c0 similarly relative to the origin 
atom. Then the additional phase factor entering the 
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Fig. I. Illustration of the independent nucleation of the t h r e e  
subvariants within a single variant. 
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kinematic sum after transformation is exp [2ni(x,,- 
tc0)h3]. But for different atomic pairs characterized by 
the same n~nzn3, ic,-Xo may be any integer between plus 
two and minus two. Hence after transformation equa- 
tion (3) becomes 

l(k) = ~ ~ ~ N ,  exp [2ni(nlhx + n2h 2 "t- 2n3113) 1 
nl /'/2 ?/3 

× (exp [ik. ~n3]> (exp [2ni(K,-K0)h3]> , (7) 

the second indicated average being performed over all 
atomic pairs described by a common nd~2na. Performing 
the summation indicated by (7) is dependent on finding 
(exp [2ni0%- Ko)h3] ). 

Diffraction theory, lI. Calculation of the intensity 
from a model 

We evaluate equation (7) for a specific model of a par- 
tially transformed alloy. For simplicity we take the 
crystal to be composed of four equally likely regions: 
031, 032, 033, and untransformed ft. We assume that in 
each of the 03 regions only integral cells exist; no 03 cell 
fragments are allowed. We choose at random a hexag- 
onal net plane to contain the origin, and we compute 
<exp [2ni(K,-K0)h3]) for all atomic pairs, one element 
of which is contained in the origin plane and the other 
in the n3th hexagonal plane above it. At this point the 
A, B, or C character of a plane is arbitrary; we estab- 
lish a labeling convention by calling the plane of the 
origin A. We specify criteria for deciding which of the 
four regions any given atom in the origin plane is in. 
If the atom is itself undisplaced 0% = 0) and its neighbor 
in the preceding hexagonal net plane (at x,y=:~,-~)~ 2 is 
also undisplaced, the region is identified as untrans- 
formed. If its neighbor is displaced downward c/6, the 
region is 031. No upward displacement of the preceding 
neighbor of our undisplaced origin atom is allowed, 
since that would create a defective co cell. If the origin 
atom is displaced downward c/6 (Ko = -1 ) ,  the region 
is 032. It must be followed by an undisplaced atom, and 
preceded by one displaced upward by c/6, as illustrated 
in Fig. 1. If the origin atom is displaced upward c/6 
(K0 = + 1), the region is o)3. These criteria for establish- 
ing the identy of the region containing the origin are 
illustrated schematically in Fig. 2. 

%=P. 

~=I 

nj=O i )D, LA,V£ OF T//£ 

O,W¢/# ATON 

°4, ~ % ,e 
Fig .  2. S c h e m a t i c  r e p r e s e n t a t i o n  o f  the  a t o m i c  p l a n e  p o s i t i o n s  

in  the  t h r e e  s u b v a r i a n t s  a n d  u n t r a n s f o r m e d  B. 

Having specified the character of the immediate 
vicinity of the origin, we proceed to translate ntal +nza2 
within the hexagonal net plane. As we do we will cross 
boundaries between the four equally likely regions. 
Table 1 gives the probability that we find ourselves in 
any of the four regions after having begun in a specified 
region (say region I), and after having crossed a speci- 
fied number of boundaries. The Table is based on the 
assumption that any region has with equal probability 
neighboring regions of the other three kinds. Note that 
as the number of boundaries crossed increases the prob- 
abilities Pp (that after having crossed p boundaries one 
is in the same type region as that of the origin) and 
P~, (that one is in a region different from that of the 
origin) approach their random value of one-quarter. 
It is shown in Appendix A that 

P p = ¼ + ~ ( - k )  p (8) 
and 

P~,=¼-¼(-½)P.  (9) 

Table 1. Probabilities for translations in a plane 
composed o f four distinctly different regions 

Number of boundaries Probability of terminating in region 
crossed 

0 
1 
2 
3 
4 

I I I  I I I  I V  

1 0 0 0 
0 ~t ~ 

7 20 20 20 
2--~ gT ~ T a-T 

e~ e; p; e; 

To describe the statistical character of the alloy for 
the component of translation parallel to c, we take a 
vertical column of material to be composed of two 
kinds of translational entities : integral 03 cells of height 
c, and adjacent undisplaced planes (fl regions) of height 
c/Y Clearly to pass from, say, subvariant 031 to e32 in 
such a column, we must traverse (3q+ 1)fl translational 
entities, since as is evident from Fig. 1 or 2 an co2 
region is translated by c/3 relative to co 1. Similarly, to 
pass from 031 to o)3, there must be interposed (3q + 2) fl 
translational entities. 

Since by volume the alloy is one-quarter untrans- 
formed, and since a fl entity is one-third the height of 
an 03 cell, the two must exist in equal numbers in a ver- 
tical column. For simplicity we assume that the two 
entities are randomly distributed in the column; that is, 
the probability that an undisplaced atom begins an 
integral 03 cell is one-half, and the probability that it is 
followed by another undisplaced atom, or that it be- 
gins a fl entity, is one-half. 

It is important to note that this simple model will 
not lead to the relatively large 03 regions shown in Fig. 
1, for which a certain amount of local order would be 
necessary. The Figure is also not intended to suggest the 
relative volumes of transformed and untransformed 
material used in this first model. 

To compute (exp [2ni(K.-/%)h3]), we introduce a set 
of conditional probabilities a.3 , the probability that 

A C 29A - I* 



588 Ti A N D  Zr B.C.C.  S O L I D  S O L U T I O N S  C O N T A I N I N G  T H E  o9 P H A S E .  I 

after having found an a tom to be undisplaced in the 
origin plane, we traverse n3 planes parallel to e and find 
n3th a tom also undisplaced. Note  that  as defined here, 
o-, 3 depends only on the two atoms being undisplaced; 
that  is, that  they terminate a translational entity, with- 
out  regard to whether the entity is fl or 09. 

We may now write the contr ibution to (exp [2rci0¢, 
-t%)h3]) for those atomic pairs which begin with the 
origin in, say, an o92 subvariant.  The probabil i ty  that 
the origin is in 092 is one-fourth;  from Fig. 2, K0 = - 1 
so exp [-2niK0h3] = e x p  [2rcih3]. After having traversed 
p boundaries in the hexagonal net plane (at this point 
we describe the translation in the net plane in terms 
of  the number  of boundaries crossed; subsequently we 
will relate p to n~ + n2, the distance translated) the prob- 
ability that  we are still in an 0.) 2 region is Pp. In such 
a region, from Fig. 2, in a vertical column the a tom at 
n3= 1 must  be undisplaced. Hence 0.,a-~ is the proba- 
bility that  the n3th a tom in the column is undisplaced. 
The probabil i ty that  the n3th a tom is displaced upward 
(and hence exp [2zcitc.h3] = exp [2rcih3] ) is 0.,,3--2 [the prob- 
ability that  the (n3 -1 ) th  a tom is undisplaced] times 
one-half  [the probabil i ty that  it is followed by an inte- 
gral co cell, in which case the a tom at (n3 -  1)+ 1 must  
be displaced upward]. Similarly the probabil i ty that  the 
n3th a tom is displaced downward is ½0.n3-3"  Hence the 
contr ibution to the average sought after beginning in 
o92, traversing p boundaries in the hexagonal plane and 
still finding ourselves in o92, and translating/. i  3 planes 
parallel to c is 

¼ exp [2rcih3]Pp(0..3_l-{-½0"n3-2 exp [2zcih3] 
+½0..3-3 exp [-2~zih3] ). 

The probabil i ty that  the hexagonal translat ion cross- 
ing p boundaries  terminates in o93 is P'p. Here from 
Fig. 2 the a tom at/73 = 2 is undisplaced. Hence the sub- 
scripts on 0.. must  be reduced by one relative to the first 
case considered, and we have for the contr ibution to the 
average 

¼ e x p  [21zih3]P'p(0"n3-z-{-}0.n3-3 [2rcih3] 
+ ½0",3- 4 exp [-- 2zcih3]). 

If the hexagonal translation terminates in either o9~ or 
/~ (probabili ty 2P~), from Fig. 2 the a tom at / 7 3 = 0  is 
undisplaced and the subscripts must  be advanced by 
unity relative to the first case; the contr ibut ion is 

¼ exp [2rcih3]2P'p (0..3 + ½0"n3 - 1 exp [2 /z ih3]  

+ ½0..3- 2 exp [ - 27r ih3] ) .  

Hence the total contr ibut ion to the average for those 
atomic pairs which begin with the origin in o92 is 

(exp [2zri(x. - / ¢ 0 ) h 3 ] ) 2  - -  ¼ exp [2/zih3] {PP(0"n3 --1 

-+- ½0"n3 - 2 exp [2~zih3] + ½0"n3 _ 3 exp [ - 2rrih3]) 

-k- P 'p (0 .n3-2  "~-}0"n3-3 exp [27zih3]+½0.n3_ 4 

× exp [ - 2zcih3]) + 2P j, (0..3 + ½0"n3 - Z exp [21rih3] 

+ ½0.,3- 2 exp [ -  2nih3])). (lO) 

After substitution of  equations (8) and (9) for Pp and 
P j,, and some rearrangement,  equation (10) becomes 

(exp [2rci(K,,-tco)h3])2=~-6[l- (-½)p] exp [2~rih3] 

× {(20.n3 q- O'n3-1 Jr" O'n 3 -2 )  -~- exp [2rcih3](o',,3 _ 1 
_k_l 1 2-O'n3 - 2 q- ~-O'n3 - 3) -at- exp [ - 2zrih3](0.,,3 _ 2 + ½a.3 - 3 

10. +2 -  n3-a ) ) -k -¼(- -½)V(O 'n3-1  e x p  [27zih3] 

+ .~O-n31 _ 2 exp [4rcih3] + 710n3 - 3) • ( 11 ) 

There exists a relation among the 0..'s. Since 0.,, is the 
probabil i ty  that  the nth plane is undisplaced, ½0..-1 
that  it is displaced upward, and ~20..-2 that  it is dis- 
placed downward,  

1 1 0.ti"]-~0.n-- 1 -JI- 20.n--2 ~--- i . (12) 

Identi ty (12) must  hold for all n. Hence (11) becomes 

(exp [2ni(x,-Ko)h3])2= ¼[1 _ (_~_)v] exp [2nih3] 
× {½+¼ exp [2nih3]+¼ exp [-2nm3]} 
+ ~(1 _ ±3) ~'(0..3 _ x exp [2nih3] + ½o',3_ 2 exp [4nih3] 

10. +2- " 3 - 3 )  " 

Or, with the notat ion 

o~- = ½ + ¼ exp [2~zih3] + ¼ exp [ - 2rcih3] (13) 

we have that  

(exp [2rci(x,-  K0)h3])2 = ¼[1 - (--½)P] exp [2~zih3]~ 

+ ¼( -  ½)P(a,3-1 exp [2~zih3] + ½o-,3 _ 2 exp [4zcih3] 
-Jr- }0.n3 - 3)"  ( 1 4 )  

o~- is essentially the average structure factor per a tom;  
that  is, one-half  of  the atoms in a hexagonal plane are 
undisplaced (all of  them in ~ regions and one-third of  
them in co regions), one-quarter  of  them are displaced 
upward, and one-quarter  of  them downward.  

By a similar development,  we find that  beginning 
with the origin in an 093 subvariant,  

(exp [2~zi(K.--h'o)h3])3= ¼[1 -- (½)P] exp [-- 2rcih3]~ 

+¼(--½)P(0.,3-2 exp [-- 2zcih3] 7t-½0"n3_3 

+ ½o'.3- 4 exp [ -  4~zih3]). (15) 

The result for o91 and ,8 regions is the same, and the two 
may be combined:  

(exp [2rci(tc,-tco)h3])l +o= ½[1 - ( -  ½)~']~- 

+½(-½)P(0",3 +½0",3-x exp [2~/h3] 
+ ½0.,3- 2 exp [ -  2~zih3]). (16) 

Equations (14), (15), and (16) may now be combined to 
yield the average sought:  

<exp [2z~i(tc,- tc0)h3]> = [1 _ (_&)p~-2 

-'l- ( - -  })P{}0.n3 -~- kO'n3-3 -~"120.n3_ 1 exp [2/rib3] 

+ ½0.,3- 2 exp [ - 2rcih3] + ~0.,a- z exp [47rih3] 
1 exp [-- 4Jzih3] } -'1- -go.n3 -- 4 (17) 
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Introduce the notat ion 

_ 1 1_ L 1 /D'n 3 - -  (~0-n3 + 40 'n3  - 3 - -  3 . )  21_ (-2 0-n3 - I - -  ~ )  exp [2xih3] 

+ (½0-,3 -z - -~-) exp [ -  2~zih3] + (~ 0-,3- z -a-~6 -) exp [42~ih3 ] 
-'~- ( -~ -0 -n3_4- -  TI~ ") e x p  [-4/zih3] . (18) 

In the above expression ~ z  as given by equation (I 3) 
has been used. Then 

(exp [2z~i(x,- %)hz]) = ~  2 + ( - 1 ) ° V ,  z . (19) 

Though we have derived equation (19) by beginning 
with the origin on an A plane, an identical result 
clearly obtains with the origin on B or C, since the A, 
B, or C character of a plane is contained in the factor 
(exp [ ik .  8,,3]) of equation (7). Note  from (18) that  
///n3 converges to zero for large //3, since in that case 
0-,, 3 is simply the probabil i ty that  an a tom is undisplaced 
namely one-half. In Appendix B, two additional neces- 
sary properties of ~u, 3 are displayed. 

This result may now be substituted into equation (7). 
With equation (3) for Ie, we obtain 

l(k)=~Zlt~ + ~ ~ ~ N,, exp [2z~i(nJh +nzhz 
r t l  /'12 /'13 

~'/1 ! 1~2 

+ 2n3h3)](exp [ ik.  ~3,3])V,,3 ~ S~, x+"z(-½)p. (20) 
p--o  

Here $7/+"z is the probabil i ty that  in a translation of 
nta~ + nzaz, p boundaries are crossed. If each translation 
of ax or az provides an oppor tuni ty  for a fault, clearly 
p must  be between zero and n~+n2. To evaluate the 
sum over p, let ~ be the probabil i ty that  a boundary  is 
crossed in a translation of at or a2. Assume that  the 
distribution of boundaries is random. Then Sgt+"2= 
(1 --~)"1+n2. For  one boundary,  we have $71 +"z= 
(nl + nz) (1 - 0~) "1 +"z- 10~" The factor nx + n2 results from 
the fact that  there are n~+nz places to put the single 
boundary.  For  two boundaries,  S'~+"2=½(n~+nz) 
(n~ + n2 - 1 ) (1 - ~)"~ +"2- 2~2. Here there are nx + n2 places 
for the first boundary  and nt + nz-  1 for the second one. 
We must divide by two since an interchange of  the 
boundaries does not constitute a new configuration. 
In general 

hi+n2 

s~ '  + " ~ ( - ½ ) " :  ( 1 -  ~)"~ +°~ + (n~ + . 0  (1 - ~)"~ +"'-~ 
, , 0  

x ( -  ½~) +-~(ni +nz) (nl +nz-1)  (1 - ~ ) " l + " z - 2 ( -  ½~) z 

(nl + n2)! 
+ "'" + -(n~ +n2-  P)!P! (1 -~)"~+"2-~'(-½7)P 

+...=[(l-cz)+(-½~z)]"~+"z=q "~+'z (21) 

where r/= 1 -4~ /3 .  With this result equation (20) be- 
comes 

I(k)=-~2Ie + N ~ (~l exp [2rcih~]) "t ~ (r/exp [2rrih2]) "z 
r t l  7 / 2  

× ~ ~'n3(exp [ ik .  ,5,31) exp [4rcin3h3]. (22) 
n3 

The first term of equation (22) gives sharp Bragg max- 
ima only at the fundamental  positions in reciprocal 
space. They are ' fundamental  reflections' in the sense 
that  they depend only on the average structure. The 
factor ,~z on 18 accounts for the experimentally ob- 
served static pseudo Debye-Waller  factor on these re- 
flections. Diffraction effects related to short-range fluc- 
tuations about  the average structure are contained in 
the second term of (22). However, here we are con- 
cerned not with short-range order among chemically 
different atoms, but order among different structural 
configurations. 

Because q is less than one and q/,3 approaches zero 
for large n3, the three sums of equation (22) all con- 
verge. We are thus justified in making the infinite-crys- 
tal approximat ion;  that  is, we may replace N, by N, 
the total number  of atoms in the crystal, and remove it 
from the triple sum as indicated in (22). 

In what follows we will be concerned primarily with 
lo=I--.~2It~, the diffuse part  of the intensity distribu- 
tion related to the local structural order. With the 
notation 

G(hJTz)= ~ ~ (q exp [2rciiq])"l(q exp [2Jzih2]) "2 (23) 
nl n2 

and 

Q(hlhzh3)= ~ V,3(exp [ ik.  ~i,3]) exp [4rcin3h3] (24) 
n3 

we have from equation (22) that  

Io/N=GQ . (25) 

The detailed evaluation of the two-dimensional dif- 
fuse function G(h~hz) is described in Appendix C. We 
discuss here briefly some of its properties. Because it is 
essentially a two-dimensional Fourier  series whose 00 
Fourier  coefficient is unity, we must have for any r/ 
that  

llo !loG(iqhz)dhtdh2= l . (26) 

For large q (or small ~) it consists of peaks centered on 
integral h~ and h2. The peaks broaden as q decreases. 
At r /= 0 (or ~ = ¼), G(hlh2) is structureless and equal to 
unity. That  this is so results from the fact that  ~---¼ 
causes a random distribution of the four kinds of re- 
gions in the hexagonal net plane. In the plane the prob- 
ability that  an a tom has a neighbor with a like en- 
vironment  is 1 - ~ = ¼. The probabil i ty that  its neighbor 
has any one of the other three possible environments is 
~/3 = ¼. There is thus no structural short-range order in 
the net plane. 

Though it involves a sum only over n3, Q depends on 
all three variables because k .  ,5, 3 contains hi and h 2. 
Its evaluation derives from ~',a as given in terms of 
o-, 3 by equation (18). Given that  0-0 = 1 and 0-1=~, 
equation (12) may be used as a recursion formula for 
the generation of subsequent 0-,'3 s. This procedure, with 
the evaluation of ~u, a from equation (18) and the sum- 
mat ion of equation (24) to give Q(hlhzh3), may be 
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readily performed with a computer. Because (18) con- 
tains 0 " n 3 _ 4 ,  ~b¢0, Ifi¢l, /fi¢2, and ~¢/3 must be treated as special 
cases. 

We compute gq. The contribution to (exp [2rri(h-,-- 
K0)h3] ) for those pairs beginning in oJ2, for !13 : l ,  is 

(exp [2rci(a:, - tc0)h3])z: ¼ exp [2Jzih3] [¼ + 3(-½)°](1) 

+¼ exp [2nih3] [¼-¼(-½)"]  
x (1 + exp [2rrih3] + exp [-2rcih3]). (,27) 

This expression follows from Fig. 2. In ~o2 the proba- 
bility that the plane for n3 = 1 is undisplaced is unity. In 
cox or fl the first plane may be undisplaced (probability 
one-half) or it may be displaced upward (probability 
one-half). In v93 it must be displaced downward. Hence 
2(½ + ½ exp [2rrih3]) + exp [ -  2nih3] must be the coeffi- 
cient of ¼ exp [2rdh3]P'p. After simplification (27) reduces 
to 

(exp [2rd(tc,-lvo)h3])z= ¼ exp [21rih3].~[l- (-½)P] 
+(-½3°¼ exp [2~zih3]. (28) 

Similarly 

(exp [2rd0c.-tc0)h3])3 = ¼ exp [ -2r t ih3]-~[1-  ( -  ½)P] 
(29) + ( 1 ~p i exp [ -  4rcih3] 

and 

(exp [2rri(h-, - ~¢0)h3]), + a = ½-~[1 - ( -  ½)P] 
+ (-½-y'(¼ + ¼- exp [2rdh3]). 

The combination of (28), (29), and (30) gives 

(30) 

(exp [2rci(~c,-ho)h3])=o ~-2 +(-½)P(¼ +½ exp [2rcih3] 
+ ¼ exp [ - 47rih3] -01~2)  . 

Hence from (19), and with .~z from (13), 

V/1 = - -} + A exp [2rrih3] - -4 t exp [ - 2rrih3] 
(i~ exp [4zdh3] + ~ exp [ -  4rcih3]. 

Similar expressions for rt 3 : 0 ,  2, and 3 are 

~0 = ~ -  ¼ exp [2zri113]- ¼ exp [-2rcih3] 
~-o- exp [4nih3]--~-~ exp [-47rih3] 

~'z = - ¼  + ¼ exp [ -  2nih3] + ~ exp [4nih3] 
~6 exp [-4rcih3] 

~3 =-J-3_ ~ exp [2rtih3]- ~ exp [-4rcih3] . 

Yakel (1972) has pointed out that an alternative to 
the enumeration of p', for n < 4 is to use the recursion 
formula (12) to advance the subscripts on the a, 's  in 
expression (18) for ~',. 

Result and discussion 

Fig. 3 illustrates Q(hIOH3) evaluated as described 
above. It is plotted in terms of H3 = 6h3 which is equal 
to the Miller index l at its integer values. The computer 

calculation of the summation of equation (24) was term- 
inated at [n3[ = 16. The function is periodic in hi with 
repeat interval three, and in H3 with repeat interval six. 
For 3 < H3 < 6, Q may be obtained from Fig. 3 and the 
fact that the point h~,H3=2a,3 is an inversion center. 
The positions of the sharp fundamental Bragg maxima 
are indicated on the map by closed circles. 

There are certain aspects of our calculation which 
suggest that it is an approach to physical reality. We 
have correctly separated the pattern into sharp fun- 
damentals and superstructure reflections which are 
diffuse. The diffuse peaks tend to be broader in direc- 
tions perpendicular to c* as observed, though this 
broadening is frequently observed to be more exagger- 
ated than is shown in Fig. 3. 

As has been pointed out, diffraction patterns of more 
concentrated alloys often indicate that the structural 
parameter u is less than x 6. For the part of the pattern 
represented by Fig. 3, smaller u causes the intensity of 
hkl= 103 to be much greater than 203, while they are 
shown to be the same in the figure. 

Our calculation is easily modified to account for this. 
To cause F203 to vanish, u must be ~-. If we choose 
a 3 = c/9, equation (3) becomes 

/a(k) = ~ ~" ~, N n exp [2rci(nlhl + nzhz + 3n3h3)] 
nl /12 /13 

x (exp [ ik .  t~n3]). (36) 

070 1 '0 2'0 3'0 
hi 

_ !  Fig. 3. The function Q(htOH3) for u-~,. 

0'0 

3 ' 0  A 

. l \  k \ \ < - _  

(33) H3 ~ 0 5 ~ ~  
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Now, upon transformation, the atomic displacement is 
either 4 c / 9 -  c/3 = a3 or 5 c / 9 -  2c/3 = - a  3. With h-, and 
x0 defined as before, a parallel development follows 
leading to identical results, except that equation (24) 
becomes 

Q(hJ~zh3) = ~ ~ . 3 ( e x p  [ i k .  6.3] ) exp [61zin3h3]. ( 3 7 )  
n3 

The meaning of q/,3 is unchanged. 
Fig. 4 for Q(htOH3) was computed from equation 

(37) with the same ~u,'s used for Fig. 3. Here/-/3=9h3 

~ 5 

4.0 . ~ H 

H3 ~ l 

eo , ~ z  j 

0.0 AJL 

~ J  

i' 

\ o 

~ o . s J  

0.o to ,go 30 
hi 

Fig. 4. The  f u n c t i o n  Q(h~OH3) for  u=.~. 

and the point hi, H3 = 2,23 o is an inversion center. The 
figure shows that we have successfully suppressed the 
203 reflection while the intensity of hkl= 103 remains 
strong, in qualitative agreement with observation. 

The sense in which our calculation has failed is that 
though the diffuse superstructure maxima are shifted 
from the usual nodes of the reciprocal lattice parallel to 
c*, all of the shifts shown in Figs. 3 and 4 are in the 
wrong direction. For example the 002 maximum is 
shown in the figures to be shifted away from the origin; 
it is invariably observed to be shifted inward. 

We were convinced that this discrepancy must be 
related to the artificial state of order (a random distri- 
bution of the two equally likely structural entities in the 
vertical columns), or possibly the simple composition 
(one-quarter untransformed), or both. The theory was 
generalized in terms of a nearest-neighbor order param- 
eter 7 for the vertical columns, 7 being the probability 
that an ~ cell is followed by a fl translational unit, and 
x, the fraction of the crystal untransformed. With the 
computer, the position of the 002 maximum was moni- 
tored for 0 < 7 < 1 and 0 < x < 1. For no values of 7 and 
x was the direction of the peak shift reversed. Hence 
no generalization of the model described here will agree 
with experiment. 

This unexpected result forces us to conclude that we 
may not reproduce the intensity distribution using only 
the building blocks of the transformed and untrans- 
formed material. It is likely that there exist in the 
crystal local atomic configurations not found in either 
the fl or ~ phases. 

At this time methods for the solution of short-range 
structure problems are sufficiently primitive that we 
may do little else than make reasonably plausible 
guesses. We have very little feel for how a particular 
local atomic configuration reflects itself in reciprocal 
space in terms of peak shift directions and the other 
quantitative properties of the intensity distribution. 

In a companion paper the last in a series of models for 
the short-range structure of this alloy, which does re- 
produce quantitatively the experimentally observed in- 
tensity distribution, is described. 

APPENDIX A 
The probabilities Pp and Pr' 

Consider a plane divided into an infinite number of 
small regions, T of which are distinctly different. We 
migrate in the plane, beginning in one of the regions. 
Pp is the probability that after having crossed p boun- 
daries, we find ourselves in a region identical to the one 
containing the origin. P~, is the probability that we are 
in a region different from that of the origin. We assume 
that on crossing a boundary it is equally likely that we 
enter any of the other T -  1 different regions. Then 

P . + ( T - 1 ) P ' p =  I . (38) 

Suppose that after having crossed p -  1 boundaries, we 
find ourselves in a region different from that of the 
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origin. From such a region, the likelihood that the next 
boundary traversed will take us into an origin-like 
region is 1 / ( T - 1 ) .  But there are T - 1  origin-different 
regions for which such a result obtains. Hence 

pr=(T-1)e,,_(/(T-1):Pv_l'. (39) 

Combination of equations (38) and (39) to eliminate 
P~, gives 

P v = ( 1 - . P ~ , _ I ) / ( T -  1). (40) 

The general solution to a difference equation of this 
form is P~ :-a  + bz v where a, b, and z are constants. Its 
substitution into (40) gives 

{ a -  l / ( T -  l ) + a / ( r -  1)} + bz~'-'{ l / ( T  - l ) +  z } = 0 .  

Since this must be true for anyp ,  we have z =  - I / ( T -  1) 
and a =  1/T. So Pp=  l / T + b [ -  1 / ( T -  1)] ~'. To find b 
we use the boundary  condition that  P0 = l, which gives 
b = ( T -  1)/T. So 

Vp= l / T + [ -  1/(T- 1)1"(T- 1)/T. (41) 

From equation (38), 

P~,: (1-  Pp)/(T-1)= { (T -1 ) /T -  [ -  1/(T- 1)] ~ 
x ( T - I ) / T } / ( T - 1 ) = I / T - [ - 1 / ( T - 1 ) ] " / T .  (42) 

Equations (41) and (42) reduce to equations (8) and (9) 
of  the text for the special case that T = 4 .  

A P P E N D I X  B 

P r o p e r t i e s  o f  ~,~ 

In order that the function Q(hthzh3) be real, from equa- 
tion (24) it is necessary that ~,--~u*_,. Given that  we 
have established the character of o~ and fl regions (Fig. 
2) by specifying configurations below the origin plane, 
it would appear that  we have introduced a polarity into 
~u,: it is not obvious that  g ,  has this property.  We 
prove that  it does. 

With 0._,,=o-,, and with the convention established 
in Fig. 2, as before we compute the contr ibution to 
(exp [2rci(Jc_,,-~co)h3]) for those atomic pairs which 
begin with the origin in an c02 subvariant:  

(exp [2rci0c_,,- x0)h3])z = A- exp [27Hh3] {Pp(0"n3- z 

+ ½a,,3- 3 exp [ - 2rcih3] + ½a, 3_ ~ exp [2rdh3]) 
1 -lo- exp [ -- 2rcih3] + -zo',3 _ 3 +2Pp(° ' ,3-1 + 2 ,,3-z 

× exp [2zih3]) + P'p(a,,3_3 +½a,,3-4 exp [ -  2rcih3] 
' exp [2rHh3])} . "+- 2-0.n3 - 5 (43) 

Equation (43) is the analog of equation (10) for n3 
negative. With Pp and P~, eliminated with equations (8) 
and (9), and with ~ as defined by equation (13), we 
have 

(exp [2rci(x_, - h-0)h3])2 = ¼[1 - ( -  ½)"] exp [27ci113],~- 
1 p + ¼( - g) (a,a-  z exp [2zcih3] + ½-a, 3_ 3 

+ ½0.,3-4 exp [4rcih3]). (44) 

Similar expressions for the origin in o~.~. fl. and co, re- 
gions are 

(exp [2~zi(K_, -- leo)ha])3 = ¼[1 - ( - ½)P] 
× exp [ - 2rcih3] - ~ "  -'~ 1 (  __ .3!I ] P ( o ' , , 3 _  t exp [ - 2rcih3] 

+~1 o-,3_2 exp [ - 4rcih3] + ½0.,3 - 3)', (45) 

(exp [2gi(h-_,,- ic0)h3])a = ~[1 - ( -  ~)P].~" 
+ ¼(-½)P(a,3-1 +~0.,3- z exp [ -  2rcih3] 

+ ½a,3- 3 exp [2rcih3]); (46) 

(exp [2~zi0c_,,- Ic0)h3])1 = ~[1 - ( - ~)P].Y 
'~p(0., + ~-a,3_ exp [ -  2rcih3] "[- J4 ( - -  3 J  3 - 3  4 

+ ½a,,3-s exp [2nih3]). (47) 

Combinat ion of equations (44), (45), (46), and (47) 
yields a result analogous to equation (19): 

(exp [2rci(x_, - h0)h3] ) = ,~z + ( _ ,.v,,,, • 3 /  W - - n 3  

with 

.'o -~)  I /I /_ t '3 : ( ½ 0 " " 3  -- 3 + 4 n3 - 1 

+ ( ¼ 0 " n  3 - 1 + 1 1 0 " n 3  - 2 0"n3 - 4] - -  1 ) exp [ - 2rHh3] 

+(¼0",,3-2 +-~-[0",3-3 a , ,3-s] -  ¼) exp [2rcih3] 
+ ~ )  exp [ ({a,,3- z - - 4rcih3] 
+ ( ~ a , , 3 _ 4 - ~ )  exp [4xih3]. (48) 

To show that  equation (48) is simply the complex con- 
jugate of equation (18) an identity is required. Since the 
origin may with equal probabil i ty be followed by a fl 
entity, which advances n3 by one, or an ~o cell, which 
advances it by three, it follows that  

_ i ( 4 9 )  O'n - -  ~-O'n - 1 "+- -~. O'n - 3 • 

If we use equation (49) to eliminate a,,3_1 in terms of 
a,, 3 and 0",3-3 in the first parenthesis of equation (48), to 
eliminate 0. , ,3_2+o' , ,3-4 in the second, and 0.,,3-3+ 
a,3_ s in the third, we have q/_,,3 = ~u,* 3. Equation (49) 
might have been used as an alternative to (12) for a re- 
cursion formula for the generation of the a,,'s. 

In writing equations (10) through (16) leading to 
equation (18) for ~u, 3, we began in a particular kind of 
region, t ranslated in the hexagonal plane n~a~+nza: 
crossing p boundaries, and then translated n3a3 to ac- 
count for the average relative phases for nd72n3 atomic 
pairs. However, our result for ~u,, 3 must be independent 
of the path followed. We show that beginning in an 
coz region, we may reverse the sequence of the two 
translations and still obtain equation (lO). We have 

(exp [2rci(t¢,-h-0)h3])2-¼ exp [21zih3]{cr,3_z(Pp 

+ P~,{I + exp [Drih3] + exp [ -  2~zih3]}) 
1 + 2O'n3_z(P v exp [2~zih3] + Pj,{2 +exp  [-2rcih3]}) 

+-~za,,3_3(P v exp [ -  2rcih3] + P'~,{2 + exp[Zrcih3]})}. (50) 

Here after beginning in coz, a,3-~ is the probabil i ty that 
a translation of n3a3 terminates on an undisplaced 
plane, that  is, in 091 or/3. P ,  is the probabil i ty that  the 
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terminal atom in the pair is in an identical region after 
the hexagonal translation. The coefficient of P~,,1 + 
exp [27rih3]+exp [-2nih3], accounts for the ways in 
which the terminal atom may be in regions different 
from that found for the nsa3 translation. The coeffi- 
cients of ½0-,3_2, the probability that the n3a3 translation 
terminates on an atom displaced upward, and-~a 2 n3 - -3~  

that it be displaced downward, are similarly obtained. 
After rearrangement equation (50) becomes 

(exp [2~zi(tc,,- x0)h3])2 = ¼ exp [2rcih3]{Pp(a, 3_ 1 

+½o',,3_ 2 exp [2rcih3] +-12o-,,3_3 exp [-22zih3]) 

-Or P'p([O-n3_ 1 --~-O'n3- 2 -+-O'n3_ 3]-+-[O'n3_ 1 --}- ½0"n3_ 3] 
I × exp [2rtih3] + [o'. 3_ , +-2a,, a _ 2] exp [ - 27riha])}. (51 ) 

With the aid of identity (49), equation (51) may be 
reduced to equation (10). Since equations (15) and (16) 
are similarly independent of the translational sequence, 
equation (18) for ~v,, 3 must be as well. 

A P P E N D I X  C 
The latt ice s u m  G(hlh2) 

Given the conventional choice of hexagonal axes, as 
indicated in Fig. 5, we must avoid counting transla- 
tional combinations such as at + a2 as two chances for a 
boundary, since the resultant vector is itself only a 
single translation. To avoid this ambiguity, we must 
compute the sum by sextants and combine them to ob- 
tain the final result. 

With reference to Fig. 5, the lattice points in region I 
have coordinates that + n z ( - - a 2 ) ,  n~ and n 2 being any 
non-negative integer. Then the contribution to G, de- 
fined schematically by equation (23), from region I is 
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Fig. 5. Construction for the evaluation of G(h~h2). 

oo oo 

(r/exp [27riht])"* ~ (t/exp [-2rcihz]) "z 
n l - - O  n 2 - 0  

= 1/(1 --r/exp [2rriht]) (1 - r / e x p  [-2~rih2]). 

The contribution from region IV is simply the complex 
conjugate of this result minus one, since the origin is 
excluded from that region. The combination of these 
two sums after some simplification reduces to 

1 - 2r/z cos 2x(ht + h2) + r/4 
I + I V =  

(1 - 2r/cos 2:,rht + r/2) (1 - 2r/COS2~]i 2 + r/z) 

r/2 172 

- I - 2r/cos-2~rht + r/2 . . . .  f --2r/cos Drh2 + r/2 • (52) 

In region II, the lattice points may be specified by 
,~(at+a2)+n2a~ with 1 _<,q and 0 ~ n  2. Hence 

~'~ 

I I =  ~ (r/exp [2rci{/h + h2}]) "* (r/exp [2rcih~]) ''2 
nt" -I n2 -0 

r/exp [2rti{ht + h2}] 

= ( 1 - r / e x p  [2rci{Ih +h2}]) ( 1 - r / e x p  [27rih~]) " 

Combination of this result with its complex conjugate 
gives the contribution to G from regions II and V. 
After simplification there results 

1 - 2q 2 cos 21rh 2 + r/4 
I I + V =  . . . . . . . . . .  

(1 - 2r/cos 2rch~ + r/z) (1 - 2qcos 2rc{h~ + h2} + r/z) 
1 r/2 

- 1 -:2r/cos 2~ht +r/-2 - i - 2 r / c o s  22z{h~ +h-z}+r/2 " 
(53) 

The lattice points are given by l l l ( a l + a 2 ) + / / 2 a 2  in 
region Ill, and the lower bounds are 1 _< n~ and 1 _< n2. 
Thus 

c,o cro 

II1 = ~. (r/exp [2rci{ht + hz}]) "t ~ (17 exp [2~ih2]) "z 
h i - I  n2" I 

r/2 exp [2rci{ht + 2h2}] 

= ( 1 - r / e x p  [27ri{ht +h2}]) ( l - r / e x p  [2Mh2])" 

One finds that 

I I I + V I =  
2112 COS 27r{h, + 2h2} - 2r/z 

i l - "  2qcos 2~{/q-+-h2}-~-l~] 2) ( 1 - 2 r / c o s  2~h 2 +r/Z) 
1,]2 t,]2 

+ 1 - 2qc0s 2rc/72 + r/-2- + 1 - 2r/cos 2x{hl + h2}--+ q2" 

(54) 

On combination of (52), (53), and (54) there obtains 

G(hlhz) = { 1 - 3r/2 - 3q 4 + q6 _ 2q2( 1 - r/)Z[cos 22zhi 

+ cos 2rch2 + cos 2rc(h~ + h2)] + 4q3[cos z 2xht 

+ cos 2 2rch2 + cos 2 2x(hl + hz) - 2 cos 27rht cos 2xh2 

x cos 2rc(h~+h2)]} /{[1-2q  cos 2xht +r/2] [ 1 - 2 q  

x cos 2rchz+r/z] [1 -2 r / cos  2 x ( h l + h z ) + r / 2 ] } .  (55) 
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Equation (55) for G in closed form behaves as described 
in the text. It reduces to unity for r/=0, and with in- 
creasingly large r/it generates sharp maxima at integral 
h t and h2. 
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Our new techniques for computing intensity distributions from atomic arrangements with defects in 
periodicity were applied to a variety of models in an attempt to reproduce in detail the diffuse neutron- 
diffraction pattern of a Zr-20 wt. % Nb alloy quenched from 1273~K. The model which succeeds is 
described, and its kinematic intensity sum is derived. The resultant computed diffuse intensity distribu- 
tion is compared with experiment. 

Introduction 

In a companion paper (Borie, Sass & Andreassen, 
1973, referred to here as Part I), the calculation of 
diffuse intensity distributions in reciprocal space re- 
sulting from the formation of the co phase in b.c.c. 
solid solutions was described. The theory correctly 
separates the diffraction pattern into two parts: sharp 
fundamental Bragg maxima (those common both to 
b.c.c, and co); and superstructure reflections, the details 
of which depend on the model used to specify the atomic 
positions. For a simple model, broadened superstruc- 
ture maxima, forming planes of diffuse intensity whose 
normal is c* (the hexagonal basis vector of the reci- 
procal unit cell of the o~ phase) were found. Though 
this result is qualitatively compatible with experiment, 
the model failed to reproduce the details of the ob- 
served intensity distribution. Specifically, superstruc- 
ture peak shifts parallel to c* were found which are 
opposite in direction to those observed. Though rela- 
tive intensities of the superstructure maxima derived 
from the model agreed qualitatively with experiment, 
a quantitative fit was not attempted. 
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The model tested in Part I was that of a crystal com- 
posed of regions of either untransformed b.c.c. (the fl 
phase), or wholly transformed co, containing no frag- 
ments of co cells. Diffuse effects and peak shifts were 
taken to result from anomalous interference effects 
among the subvariants of the system, as illustrated in 
Fig. 1, Part I. 

The result of our calculation displayed in Figs. 3 and 
4 of Part I is valid only for the special composition 
¼fl, 3~0 (by volume), and for a random distribution of 
integral co cells and fl translational entities in columns 
parallel to c*. Its generalization to arbitrary composi- 
tion and states of order failed to reverse the peak shifts. 

We conclude from this that the crystal probably con- 
tains local atomic configurations not found in either co 
or fl regions. If that be the case, the diffraction pattern 
provides few clues as to what such a configuration may 
be. At this point in our understanding of the solution 
of short-range structure problems, we are reduced to 
testing physically plausible models. 

We describe here the last in a series of models, which 
reproduces quantitatively the observed diffraction pat- 
tern. The diffuse intensity distribution to be fit by 
theory was taken to be that of Keating, Axe & Moss 
(1973) shown in Fig. 1. Since it was measured with 
neutrons, it is relatively free of the double diffraction 
and dynamical effects which plague electron-diffraction 
patterns, and it is free of form factor effects which 
cause X-ray measurements to be of uneven statistical 
quality. 

The contour map of Fig. 1 is the intensity distribu- 
tion in the plane k = 0 at 300 °K for a Zr-20 wt. % Nb 


